The geometry of dual isomonodromic deformations
نویسنده
چکیده
The JMMS equations are studied using the geometry of the spectral curve of a pair of dual systems. It is shown that the equations can be represented as time-independent Hamiltonian flows on a Jacobian bundle.
منابع مشابه
The symplectic and twistor geometry of the general isomonodromic deformation problem
Hitchin’s twistor treatment of Schlesinger’s equations is extended to the general isomonodromic deformation problem. It is shown that a generic linear system of ordinary differential equations with gauge group SL(n,C) on a Riemann surface X can be obtained by embedding X in a twistor space Z on which sl(n,C) acts. When a certain obstruction vanishes, the isomonodromic deformations are given by ...
متن کاملOn the Geometry of Isomonodromic Deformations
This note examines the geometry behind the Hamiltonian structure of isomonodromy deformations of connections on vector bundles over Riemann surfaces. The main point is that one should think of an open set of the moduli of pairs (V,∇) of vector bundles and connections as being obtained by “twists” supported over points of a fixed vector bundle V0 with a fixed connection ∇0; this gives two deform...
متن کاملAlgebraic and Geometric Isomonodromic Deformations
Using the Gauss-Manin connection (Picard-Fuchs differential equation) and a result of Malgrange, a special class of algebraic solutions to isomonodromic deformation equations, the geometric isomonodromic deformations, is defined from “families of families” of algebraic varieties. Geometric isomonodromic deformations arise naturally from combinatorial strata in the moduli spaces of elliptic surf...
متن کاملIsomonodromic deformations in genus zero and one: algebrogeometric solutions and Schlesinger transformations
Here we review some recent developments in the theory of isomonodromic deformations on Riemann sphere and elliptic curve. For both cases we show how to derive Schlesinger transformations together with their action on tau-function, and construct classes of solutions in terms of multi-dimensional theta-functions. The theory of isomonodromic deformations of ordinary matrix differential equations o...
متن کاملSpectral curves and discrete Painlevé equations
It is well known that isomonodromic deformations admit a Hamiltonian description. These Hamiltonians appear as coefficients of the characteristic equations of their Lax matrices, which define spectral curves for linear systems of differential and difference systems. The characteristic equations in the case of the associated linear problems for various discrete Painlevé equations is biquadratic ...
متن کامل