The geometry of dual isomonodromic deformations

نویسنده

  • G. Sanguinetti
چکیده

The JMMS equations are studied using the geometry of the spectral curve of a pair of dual systems. It is shown that the equations can be represented as time-independent Hamiltonian flows on a Jacobian bundle.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The symplectic and twistor geometry of the general isomonodromic deformation problem

Hitchin’s twistor treatment of Schlesinger’s equations is extended to the general isomonodromic deformation problem. It is shown that a generic linear system of ordinary differential equations with gauge group SL(n,C) on a Riemann surface X can be obtained by embedding X in a twistor space Z on which sl(n,C) acts. When a certain obstruction vanishes, the isomonodromic deformations are given by ...

متن کامل

On the Geometry of Isomonodromic Deformations

This note examines the geometry behind the Hamiltonian structure of isomonodromy deformations of connections on vector bundles over Riemann surfaces. The main point is that one should think of an open set of the moduli of pairs (V,∇) of vector bundles and connections as being obtained by “twists” supported over points of a fixed vector bundle V0 with a fixed connection ∇0; this gives two deform...

متن کامل

Algebraic and Geometric Isomonodromic Deformations

Using the Gauss-Manin connection (Picard-Fuchs differential equation) and a result of Malgrange, a special class of algebraic solutions to isomonodromic deformation equations, the geometric isomonodromic deformations, is defined from “families of families” of algebraic varieties. Geometric isomonodromic deformations arise naturally from combinatorial strata in the moduli spaces of elliptic surf...

متن کامل

Isomonodromic deformations in genus zero and one: algebrogeometric solutions and Schlesinger transformations

Here we review some recent developments in the theory of isomonodromic deformations on Riemann sphere and elliptic curve. For both cases we show how to derive Schlesinger transformations together with their action on tau-function, and construct classes of solutions in terms of multi-dimensional theta-functions. The theory of isomonodromic deformations of ordinary matrix differential equations o...

متن کامل

Spectral curves and discrete Painlevé equations

It is well known that isomonodromic deformations admit a Hamiltonian description. These Hamiltonians appear as coefficients of the characteristic equations of their Lax matrices, which define spectral curves for linear systems of differential and difference systems. The characteristic equations in the case of the associated linear problems for various discrete Painlevé equations is biquadratic ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003